viernes, 20 de junio de 2014

Monitoreo de sueño

La firma Toyota ha desarrollado un dispositivo como complemento a su sistema de seguridad para disminuir riesgos de accidentes.Fue ideado para evitar que se duerma el conductor, detecta la posición de los párpados. La empresa se propone poner a disposición del mercado este sistema en un futuro próximo.Como se afirmó, es un medio complementario en el sistema de seguridad que se integra en los automóviles.Toyota es el segundo fabricante mundial, detrás de GM que es lider desde hace 75 años, cuando superó a Ford. Desde el año 2003 la firma Toyota desarrolla su sistema de seguridad para prevenir colisiones.Con una cámara ubicada en el salpicadero del vehículo que registra la posición de los párpados superior e inferior del ojo de la persona que conduce, es posible avisar cuando los párpados se cierran, emitiendo un aviso que advierte del riesgo de accidentes.Nuevas técnicas son aplicadas para mejorar la seguridad afectando la situación del automovilística ya que hay errores y distracciones que están vinculadas a los accidentes de tráfico.

viernes, 13 de junio de 2014

Cinturon de seguridad pirotecnico

El objetivo de un cinturón de seguridad es sencillo: evita que salgamos disparados por el parabrisas en caso de que el automóvil sufra una parada repentina como resultado de una colisión, de un frenazo brusco, etc.
Los pretensores son dispositivos que tienen como fin ceñir el cinturón lo más posible al cuerpo del viajero en caso de colisión. Estos sistemas actúan dando un tirón al cinturón, de modo que se evite la más mínima holgura en el momento de la colisión.

Existen diferentes mecanismos con los cuales tensar el cinturón. Uno de los más extendidos es el pretensor pirotécnico. El elemento principal de este tipo de pretensores es una cámara llena de gas combustible, en la cual se aloja una pequeña carga explosiva que actúa como detonador. La cámara de gas inflamable se encuentra alojada en un cilindro, en el cual existe un pistón móvil. Cuando el detonador se activa, el gas estalla dando lugar a un fuerte incremento de presión que empuja al pistón. Dicho pistón, al avanzar, hace girar la bobina en la cual está enrollado el cinturón de seguridad. El detonador que pone en funcionamiento todo este sistema es activado por un sensor que detecta la existencia del impacto.

Control de estabilidad

El sistema consta de, unidad de control electrónico  un grupo hidráulico y un conjunto de sensores:
Sensor de ángulo de dirección: está ubicado en la dirección y proporciona información constante sobre el movimiento del volante, es decir, la dirección deseada por el conductor.
 Sensor de velocidad de giro de rueda: son los mismos del ABS e informan sobre el comportamiento de las mismas (si están bloqueadas, si patinan...)
Sensor de ángulo de giro y aceleración transversal: proporciona información sobre desplazamientos del vehículo alrededor de su eje vertical y desplazamientos y fuerzas laterales, es decir, cual es el comportamiento real del vehículo y si está comenzando a derrapar y desviándose de la trayectoria deseada por el conductor.
Está siempre activo. Un microordenador controla las señales provenientes de los sensores y las chequea 25 veces por segundo para comprobar que la dirección que desea el conductor a través del volante se corresponde con la dirección real en la que se está moviendo el vehículo. Si el vehículo se mueve en una dirección diferente detecta la situación crítica y reacciona inmediatamente, independientemente del conductor. Utiliza el sistema de frenos del vehículo para estabilizarlo. Con estas intervenciones selectivas de los frenos, el genera la fuerza contraria deseada para que el vehículo pueda reaccionar según las maniobras del conductor. no sólo inicia la intervención de los frenos, también puede reducir el par del motor para reducir la velocidad del vehículo. De esta manera el coche se mantiene seguro y estable, dentro siempre de los límites de la física.
El control de estabilidad puede tener multitud de funciones adicionales:
Hill Hold Control o control de ascenso de pendientes: es un sistema que evita que el vehículo retroceda al reanudar la marcha en una pendiente.
"BSW", secado de los discos de frenos.
 "Overboost", compensación de la presión cuando el líquido de frenos está sobrecalentado.
 "Trailer Sway Mitigation", mejora la estabilidad cuando se lleva un remolque, evitando el efecto "tijera".

Load Adaptive Control (LAC), que permite conocer la posición y el volumen de la carga en un vehículo industrial ligero. 

Control de traccion

Los sistemas de control de tracción (TCS, ASR… sus siglas dependen del fabricante) tienen como finalidad principal el evitar que las ruedas motrices patinen cuando iniciamos la marcha o bien en determinadas situaciones -como curvas muy cerradas- en las que un exceso de potencia transmitida a la rueda puede provocar un deslizamiento del neumático.
Los primeros sistemas de control de tracción provienen del mundo del ferrocarril. Una rueda de acero y una vía del mismo material no poseen demasiada adherencia. Además, la potencia de las locomotoras es enorme, de forma que es fácil que pierdan motricidad. En los dispositivos iniciales, una aceleración súbita de las ruedas de tracción hacía saltar una alarma para que el maquinista accionase el arenero(un pequeño depósito de arena con una trampilla delante de las ruedas de tracción) y dejase caer arena sobre la vía, aumentando así la adherencia de la llanta de acero sobre el carril.

 

Cómo funciona el control de tracción:

En este caso, entran en juego los sensores de giro de las ruedas que emplea el ABS y, además, el sensor de posición del acelerador (y el del acelerador y mariposa, en los motores de gasolina). Los de las ruedas detectan si una o varias giran más rápido que las otras, y el sensor de pedal del acelerador indica a la unidad de mando que es debido a un exceso de “gas”. Aquí tenemos dos supuestos:
Lo más normal es que sea una de las ruedas la que empiece a patinar, bien porque estamos trazando una curva y la cubierta interior pierde adherencia al transferirse peso a la exterior o bien porque estemos sobre la pintura de un paso de cebra, etc. En este caso, el control de tracción primero intenta frenar la rueda que patina aplicando el freno sobre ella y provocando una especie de efecto de diferencial autoblocante. Si con la acción del freno no es suficiente para corregirlo, se activa la segunda fase, en la cual reduce la potencia del motor cortando el acelerador, por más que el conductor siga insistiendo con el pie derecho. Es conveniente darse cuenta de que, en este caso, los frenos se calientan bastante. Por seguridad, para evitar que el coche se quede sin frenos por fadding (pérdida total de la capacidad de frenada por exceso de temperatura), la mayoría de los sistemas de control de tracción se desactivan cuando se abusa demasiado de ellos.
Si las dos ruedas del mismo eje patinan por un exceso de acelerador, directamente se activa la fase dos, reduciendo el suministro de combustible al motor.

Frenos ABS+EBD

Con la intención de mejorar los niveles de seguridad, las automotrices han ido perfeccionando los métodos de frenado a los largo de los años. En la actualidad, existe un grupo de dispositivos auxiliares que ayudan a que los vehículos sean más seguros y fáciles de controlar: el Sistema de frenos antibloqueo (ABS), la Distribución de la fuerza del frenado electrónicamente (EBD)


La función de un sistema de frenado es transformar la energía cinética en energía calorífica para lograr reducir la velocidad del vehículo. Más allá de la utilización de diversos frenos a fricción (por ejemplo: disco o tambor) existen tecnologías especiales que contribuyen de manera complementaria.

Sin embargo, en varios casos, los usuarios desconocen el funcionamiento de estos elementos. De hecho, según un estudio realizado por el Instituto de Seguros para la Seguridad Vial (IIHS), el 50% de los conductores encuestados contestaron que creían que para activar el ABS debían bombear el pedal de frenos.

A continuación algunos datos sobre el ABS, EBD

Sistema de freno antibloqueo (ABS): Cuando se produce una frenada de emergencia, este sistema busca evitar que las ruedas se bloqueen y el vehículo se deslice sin control y no reacciones a los movimientos del volante. Para que esto no ocurra, los sensores envían una señal al Módulo de Control del sistema ABS, el cual reduce la presión realizada sobre los frenos, sin que intervenga en ello el conductor. Cuando la situación se ha normalizado y las ruedas giran de nuevo correctamente y la presión sobre los frenos vuelve a actuar con toda la intensidad.

Distribución de la fuerza del frenado electrónicamente (EBD): La función de este dispositivo es repartir la fuerza del frenado entre las ruedas delanteras y traseras para lograr una eficiente detención del vehículo. El sistema calcula si el reparto es adecuado a partir de los mismos sensores que el ABS. Ambos sistemas en conjunto actúan mejor que el ABS en solitario, ya que éste último regula la fuerza de frenado de cada rueda según si ésta se está bloqueando, mientras que el reparto electrónico reparte la fuerza de frenado entre los ejes, ayudando a que el freno de una rueda no se sobrecargue y el de otra quede infrautilizado.




Air-bags

Se estima que en caso de impacto frontal de un vehículo su uso puede reducir el riesgo de muerte en un 30%.

Para detener un objeto que está en movimiento, es necesaria la acción de una fuerza actuando durante cierto tiempo en sentido opuesto a ese movimiento. Cuanto más rápida sea la parada, más intensa tiene que ser la fuerza. Si, por el contrario, la parada se produce en un periodo de tiempo prolongado, la fuerza de retención puede ser menor.

El objetivo del  airbag  es detener el cuerpo de los ocupantes de un vehículo lo más suavemente posible. Esto no es fácil, pues el sistema sólo dispone del espacio existente entre el conductor y el volante; y de un tiempo de centésimas de segundo. A pesar de todo, prolongar o amortiguar, “dosificar” la parada de los ocupantes en un tiempo y un espacio tan reducidos crea sobre sus cuerpos fuerzas menores de las que sufrirían si la parada fuera instantánea. Es decir, el airbag permite amortiguar el golpe del cuerpo contra el volante, el salpicadero y el parabrisas.

Para cumplir un cometido tan difícil, el airbag hace uso de los siguientes elementos:
• Una bolsa (bag) o cojín inflable, fabricado en nailon, el cual está plegado en el centro del volante, en el salpicadero o en cualquier otro lugar donde sea necesario introducir un efecto amortiguador del golpe.
• Un detector de impacto que determina cuándo se produce un choque y activa el inflado del airbag.
• Un sistema de inflado, basado en una reacción química que se produce de modo casi explosivo y da lugar a un gran volumen de gas nitrógeno. Esta reacción es activada por sistema eléctrico controlado por el detector de impacto.

Los gases producidos de modo explosivo alcanzan suficiente presión como para inflar el airbag en 20 centésimas de segundo. La rapidez del proceso es tal, que el volumen de gas producido hace que el airbag salga de su alojamiento a una velocidad de 300 km/h.

Instantes después de que el airbag se infle, el gas producido comienza a disiparse a través de pequeños orificios existentes en la tela. De este modo, el airbag se desinfla permitiendo la movilidad de los ocupantes.